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This paper proposes a new vector hysteresis model based on series-distributed play hysterons. First, a new vector play operator is 

developed to satisfy the rotation loss property beyond saturation, which the ordinary vector hysteresis model fails to obey. Second, a 

variable recoil-line slope algorithm is introduced to more accurately represent individual minor loop behavior and to best match the 

measured minor loop. Then, to accommodate the proposed vector play operator and the variable slope algorithm, a series-distributed 

hysteron model is put forward. Finally, a detailed parameter identification procedure which is not only practical, but also 

computationally efficient is established. The presented model has been successfully implemented in 2-dimensional (2D) and 3-

dimensional (3D) transient finite element analysis (FEA). Some application results are presented. 
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I. INTRODUCTION 

HE PHENOMENON of magnetic hysteresis has been 

observed for a long time in various magnetic materials 

which are widely used in electrical devices. To simulate the 

magnetic hysteresis behavior, a hysteresis model is required to 

be coded in FEA software. One of the most widely used 

models for magnetic hysteresis is the Preisach model [1] or 

extensions of the original model. Although the scalar Preisach 

model can accurately predict the hysteresis behavior when a 

magnetic field is applied in a fixed direction, the vector 

Preisach model fails to match the measured data for large 

rotating fields [2]-[3].  

Some extensions of the original vector Preisach model [2] 

were proposed [4]-[6], but they still have certain limitations 

which include: unable to fulfill all essential properties that a 

vector hysteresis model should possess, or difficult in 

parameter identification, or computationally intensive. 

To predict the magnetization behavior for isotropic 

magnetic materials with hysteresis in 2D or 3D transient finite 

element analysis (FEA), it has been recognized that the vector 

play model [7]-[11] is more computationally efficient than 

various vector Preisach models. However, the ordinary vector 

play model does not obey the rotational loss property. Some 

modified vector play models have been developed to satisfy 

the loss property, but their applications are still limited due to 

the difficulty in parameter identification [7]-[8], or over 

simplistic minor loop behavior [11]. 

This paper presents a new vector hysteresis model based on 

series-distributed play hysterons for isotropic magnetic mate-

rials. All required parameters of the model can be convenient-

ly identified from the major hysteresis loop and loss curve. 

This model not only satisfies the rotational loss property, but 

also improves the accuracy for minor hysteresis loops. 

II. THE MODEL 

A. Ordinary Vector Play Model 

In the ordinary vector play model, the magnetization m is 

computed from the applied field h as 

rererean hhm /)()( hhm    (1) 

where man(hre) is an anhysteretic curve, and hre is the absolute 

value of hre(h), which is the vector play operator, representing 

the reversible field component, and is expressed by 
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where r, representing the maximum limit of the irreversible 

field component hir=h–hre, abbreviated as irreversible limit, is 

a given parameter, and hre0 is the initial value of hre.  

The vector play operator of (2) in a fixed direction, or the 

scalar play operator, can be illustrated by Fig. 1(a). 

Finally the flux density is computed from 

)()( 00 rere hhbhmb     (3) 

where 

)(0 rere hmb     (4) 

which can be understood as an anhysteretic, or reversible, b-h 

curve. 

      

(a) Ordinary play operator                   (b) Improved play operator 

Fig. 1.  Scalar play operators 

Equation (3) shows that when |h - hre| < r, which means h 

varies within the major hysteresis loop, the point (hre, bre) will 

be fixed on the reversible b-h curve, and b(h) will trace on a 

recoil line with constant slop of 0. 

B. Play Operator with Variable Irreversible Limit 

With the ordinary vector play operator, if the applied field 
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rotates, it can be proved that at the steady state, the irreversible 

component hir will be perpendicular to the reversible compo-

nent hre. The magnitude of hir, or r, is constant no matter how 

large the applied field is, which means m, in the same direc-

tion of hre, will always lag h a certain angle. Therefore, the 

ordinary vector play model does not satisfy the rotational loss 

property. 

To satisfy the rotational loss property beyond saturation, the 

irreversible limit r has to be zero when field is saturated. 

Therefore, in play operator (2), the irreversible limit r can be 

defined as a function of the reversible field hre, and is pro-

posed to be 
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where r0 is the irreversible limit at hre = 0, which represents 

the intrinsic covercivity. 

The improved play operator with variable limit r is shown 

in Fig. 1(b), from which one can observe that the ascending 

and descending operator curves are tangential to the two paral-

lel ordinary operator lines, and are inscribed in the dashed 

parallelogram. 

C. Play Hysteron with Variable Recoil-Line Slope 

In the ordinary play model, all recoil lines inside the hyste-

resis loop have the same slope of 0. The ordinary play model 

with only one play hysteron is able to provide reasonable ac-

curacy for major loop behavior. However, due to the same 

slope for all recoil lines, the area of a minor hysteresis loop 

which is bounded within the major loop and two parallel recoil 

lines is normally much larger than the measured one. In order 

to more accurately represent minor loop behavior, a variable 

slope algorithm is introduced so that the area of a derived mi-

nor loop can best match the area of the measured minor loop. 

The flux density of a play hysteron with variable recoil-line 

slopes is expressed as 
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with k being a new parameter to be identified.  

D. Play Model with Series-Distributed Play Hysterons 

The play model with only one play hysteron can simulate 

the major hysteresis loop very well. However, the minor loop 

behavior is over simplistic. To better represent realistic minor 

loop behavior, a play model with series-distributed play hys-

terons is proposed, as shown in Fig. 3, where field intensity hk 

is expressed as the function of flux density bk for the k-th play 

hysteron. The total field for series-distributed play hysterons is 
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where parameters wk, to be identified, are the weighting fac-

tors for all play hysterons.  

 

Fig. 2.  Play model with series-connected play hysterons 

III. APPLICATIONS 

The proposed model has been implemented in 2D and 3D 

transient FEA solvers. One of the test cases is a 4-pole, 24-

slots, 550W, 1500rpm hysteresis motor. The motor is operated 

at locked rotor with balanced three-phase ac voltage supply. 

The simulated rotor hysteresis loss is compared with the elec-

tro-magnetic power in Fig. 3. According to electrical machine 

principle, the electro-magnetic power should equal to rotor 

loss at the steady state. One observes from Fig. 3 that when 

the steady state is reached after time ≥ 20ms, the hysteresis 

loss balances the electro-magnetic power very well. More re-

sults will be provided in the final paper. 

 
Fig. 3.  The hysteresis loss compared with the electro-magnetic power 
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